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Abstract

A new natural convection {benchmark problem| for validating CFD codes is de_ned[ In the subject problem\ a cubical
air!_lled cavity\ tilted at 9\ 34>\ or 89>\ has one pair of opposing faces at di}erent temperatures\ Th and Tc\ respectively\
the remaining faces having a linear variation from Tc to Th[ In contrast to some other benchmark problems\ this problem
is physically!realizable[ Experimental techniques to establish the thermal boundary conditions and to measure the
Nusselt number to 0) accuracy are reported[ Measured Nusselt numbers at Rayleigh number equal to 3×093 are shown
to agree with CFD predictions to within 29[2)[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

Ahp area of the heat plate
cp speci_c heat of air at constant pressure
e emf of the heat ~ux meter
f function representing the variation of speci_ed air
properties due to temperature and pressure deviations
from their reference values
g acceleration due to gravity
k air thermal conductivity
L distance between the hot and cold faces of the cubical
cavity "see Fig[ 0#
M number of measurements in a set of experiments to
measure the same Nusselt number
n local slope of graph of log Nu vs[ log Ra
Nu Nusselt number\ �0¦qconv:"kDTL#
P air pressure
q heat ~ux^ with no subscript\ q is the total heat ~ux
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"convection\ conduction\ and radiation# across the
cubical cavity from the hot to the cold plate
R gas constant for air
Ra Rayleigh number\ �gbDTL2cpr

1:mk
t thickness of the sidewalls of the cubical cavity
t Student t multiplier at the 84) con_dence level with
M−0 degrees of freedom
T temperature "K#
V voltage measured across the terminals of the heater
embedded in the heater plate
U experimental uncertainty
Z air compressibility[

Greek symbols
a proportionality constant between e and qb

b coe.cient of thermal expansion of air
DT Th−Tc

DT? temperature di}erence across the heat ~ux meter
m air viscosity
r air density
8 angle of tilt of hot face of cavity from horizontal "see
Fig[ 0#[

Subscripts
b pertaining to the back plate
B due to bias error in a measured or calculated quantity
c pertaining to the cold plate\ or pertaining to constant
air properties
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conv due to convection only
e electrical heating
h pertaining to the hot plate
I index integer
j pertaining to a joint between the sidewall and either
the hot or cold plate
k pertaining to the air thermal conductivity
m mean\ or pertaining to the group "bTmcp:"Z1mk##
o evaluated at reference temperature To � 299 K and
reference pressure Po � 0 atm
R due to random error
s quantity pertaining to stationary air conditions\ or
CFD simulated value
v pertaining to variable air properties[

Superscript
� relating to a special nominal value of the Ra\ like 093\
094\ 095\ etc[

0[ Introduction

Workers in computational ~uid dynamics "CFD# have
frequently emphasized the importance of benchmark
problems[ Once a benchmark problem has been solved
to the satisfaction of all concerned\ it can serve as a
reference point for code development and validation ] if
the code functions well on the benchmark problem\ it
should also function well on other closely!allied prob!
lems[ Ideally\ a benchmark problem should be capable
of simple statement\ and yet it should challenge the more
sophisticated codes[ An additional requirement would
also seem to be desirable ] the problem should be physi!
cally!realizable in the laboratory[

This latter requirement has not always been satis_ed
by the popular benchmark problems[ A case in point is
the problem in natural convection _rst enunciated by de
Vahl Davis ð0Ł ] namely the 1!D ~ow of air in a square
cavity with adiabatic top and bottom walls and iso!
thermal sidewalls[ Le Quere ð1Ł\ who has provided some
of the most extensive solutions\ noted that {{we are fully
aware of the fact that\ for several reasons\ this problem
could ultimately prove to be without physical meaning||[
There are two good reasons for this lack of physical
meaning[ First\ the adiabatic boundary conditions
imposed on the top and bottom walls is impossible to
realize for air!_lled cavities "see\ for example\ ElSherbiny
et al[ ð2Ł#[ Second\ the 1!D ~ow could easily be unstable
to 2!D perturbations*a condition that Penot et al[ ð3Ł
have already demonstrated for a cavity of aspect ratio 3 ^
if this is the case\ the problem would lose its physical
meaning[

Despite its non!physical nature\ the square!cavity
problem has served as a valuable concept in CFD devel!
opment[ Interestingly\ its lack of experimental con!
_rmation "which follows from this non!physical nature#

does not appear to have raised any particular inhibitions
in its use[ And while there may be good mathematical
reasons for this\ there are also very good reasons why
future natural!convection benchmark problems should
be physically!realizable\ so that measurements can be
made[ There may be\ for example\ some physical aspect
that is missing in the fundamental equations ] a case in
point would be the 2!D nature of what was taken to be a
1!D problem[ Even given the correctness of the math!
ematical model\ some aspect of the ~ow may be missed
in the solution\ or the ~ow may be bistable and the code
is converging on only one of the two solutions[ The main
area\ however\ where experimental measurements on
benchmark problems would be useful is in transition
and in fully!turbulent ~ows[ Outside of direct numerical
simulation\ it is going to be necessary to model the tur!
bulence in some way\ and since modelling laws for buoy!
ancy!driven turbulence are still in their early stage of
development\ one cannot be at all sure about the accuracy
of the time!averaged equations\ and the need to test solu!
tions against experimental measurements becomes para!
mount[

There have been several comparisons in the literature
of computed and measured results for ~uid ~ow and
heat transfer in square! or cube!like cavities ð4Ð00Ł[ The
common _nding\ however\ is that close agreement is not
found because of the lack of correspondence between the
simulated and experimental side wall boundary
condition[ The exception is the work of Hamady and
Lloyd ð8Ł\ who achieved agreement "22)# for the Nus!
selt number\ but they achieved this by using\ for the
boundary condition the CFD model\ the experimentally!
measured sidewall temperature distribution[ While this
close comparison constitutes useful knowledge\ the
method "which for a 2!D cavity would require the speci!
_cation of the temperature of every point on the side!
walls# is not entirely consistent with the basic idea of a
benchmark\ in which the model should preferably be
simply!stated and independent of any experimental
measurements[

Because of the already existing history of the square!
cavity benchmark problem\ it would seem wise to build
the new\ physically!realizable problem on that foun!
dation[ The _rst part of this paper is about de_ning a
suitable\ physically!realizable problem[ It is concluded
that the most suitable problem is the natural convection
of air in a cube with two opposing faces isothermal and
the remaining four walls having a linear temperature
variation from the cold face to the hot face*as shown in
Fig[ 0[ We de_ne\ in fact three benchmark problems ] one
with hot and cold faces vertical "as in the square!cavity
problem#\ one with them horizontal\ and one with them
inclined at 34>[ An apparatus built up to realize the speci!
_ed problem is described\ and the practical achievement
of the linear pro_le is demonstrated[ It was decided that\
for this particular apparatus\ the average Nusselt number
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Fig[ 0[ Sketch de_ning the cubical cavity benchmark problem[

should be the measured parameters of the ~ow\ and that
the accuracy in this measurement needed to be about 0)
or better\ if the results are going to be useful for testing
the codes[ The present experiment achieved this accuracy\
as will be clearly demonstrated in this paper at a Rayleigh
number of 39 999[ Because of length limitations\ the set
of results at higher Rayleigh numbers cannot be given in
the present paper\ whose contribution is to lay out the
benchmark problem and to demonstrate its physical
nature[ The benchmark results at higher Rayleigh num!
ber are left for a companion paper[

1[ De_nition of the benchmark problem

We take as our starting point the 1!D square!cavity
problem\ which was not physically achievable because
the 1!D assumption and the adiabatic sidewall boundary
condition[ "For convenience\ the walls connecting the two
isothermal surfaces of the cavity will be called {sidewalls|
regardless of the orientation of the cavity[# Replacing the
air by a higher!conductivity ~uid would make it easier to
insulate and therefore to approach the adiabatic
condition[ On the other hand\ there are at least three
important advantages to keeping to "dry# air as the ~uid[
First it turns out that uncertainties in the thermophysical
properties of the ~uid are a main source of error\ and
despite its multicomponent nature\ the properties of dry
air are well!established and known to a greater precision
than those of any ~uid "including any of the pure gases#[
Second\ with air it is possible to readily change the Ray!
leigh number by changing the air pressure\ meaning that
a single physical model can cover an extremely wide range
in Rayleigh number ð01Ð03Ł and the temperature di}er!
ence can be maintained constant\ which has certain ben!
e_ts in the heat transfer measurement ð03Ł[ Third\ the
Prandtl number for air is relatively insensitive to tem!
perature\ meaning that experiments can be carried out at

various temperature levels without confounding the
result by introducing a third variable[

Despite the advantages of using air\ one may still want
to examine the option of changing the ~uid to one of
higher conductivity "a liquid#\ making it easier to insu!
late[ One _nds\ however\ that in view of the need to
ensure that the properties are known with high accuracy\
water is about the only suitable liquid option[ With water
one would have to build a di}erent model for every
integer power of 09 in Rayleigh number\ and in order to
keep the Prandtl number of the experiments constant to
within say 09)\ the average ~uid temperature would
have to be kept the same for all experiments\ to within
about 2 K[ Moreover\ while the conductivity of water is
substantially higher than that of air\ in practice it is still
very di.cult to insulate to the degree that would be
required[ The better insulation materials have a con!
ductivity that is only about one!tenth that of water\
instead of the one!hundredth that would be really
required[ Also\ the container walls will generally have
a conductivity comparable to that of water[ "Vacuum
insulation requires a thick or a metallic wall to withstand
the pressure forces\ and this is not compatible with the
adiabatic condition*it is not su.cient merely to prevent
heat loss to the environment ^ heat transfer through the
walls to the hot and cold plates must also be prevented[#
These arguments apply in fact to almost any liquid other
than the liquid metals\ which are unsuitable for other
reasons[

Returning now to considering air as the ~uid\ an alter!
native boundary condition that is compatible with air is
the speci_cation of a linear temperature pro_le from hot
to cold face[ This well!recognized boundary condition
"sometimes called the perfectly!conducting side!wall con!
dition# is simply!stated\ easily programmed and capable
of being established in the laboratory\ as will be dem!
onstrated later[

The other aspect of the square!cavity problem that
makes it nonphysical is its 1!D character ] any real prob!
lem entails the possibility of motion in the third direction[
As opposed to the situation existing when De Vahl Davis
_rst proposed the square!cavity problem\ 2!D codes are
now very common[ Thus including the third dimension
in the benchmark problem is not only possible but
preferred[ The question remaining is how far the cavity
should be made to extend in the third direction ] an in_!
nite distance is not practical[ A suitable and simply!stated
_nite distance is the length of the side of the original
square cavity\ leading to the cubical cavity[ The linear
temperature!pro_le boundary condition can be extended
to apply to the two added walls as well[

This de_nes the physically!realizable benchmark prob!
lem "now called the cubical cavity problem# as the one
shown in Fig[ 0\ that is\ except for the question of the
orientation of the cube*see Fig[ 0[ The square cavity
problem de_ned by De Vahl Davis ð0Ł had the isothermal
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walls vertical "i[e[\ tilt angle 8 � 89>#[ This avoided the
instability and generally complex ~ow known to exist in
the case where 8 � 9>*the classical layer of ~uid heated
from below\ which\ for example\ is subject to bifurcation[
But modern codes can handle this situation as well[ It
is proposed that three cubical benchmark problems be
de_ned ] one with 8 � 89> "heating from the side#\ one
with 8 � 34> "oblique heating#\ and one with 8 � 9>
"heating from below#[ The oblique heating case will allow
the study of a problem blending the characters of the
other two orientations\ which are know to have quite
di}erent ~ow structures[

There are several possibilities for the measured par!
ameter of the benchmark problem ] temperatures at speci!
_ed points\ maximum velocity\ etc[ Enforcing the linear!
temperature!pro_le boundary condition will make some
choices "e[g[ those involving ~ow visualization# di.cult
"although not impossible#[ In the present work the rel!
evant measured quantity will be the average Nusselt num!
ber[ This measurement has a long history and should be
measurable with excellent accuracy[ It responds to the
whole ~ow*and therefore is not a quirk of a particular
region which may be highly variable in time as the ~ow
~ips from one mode to another[ It is\ however\ recognized
that\ the average Nusselt number may be insensitive to
details\ so agreement with CFD simulation need not
ensure that the details of the simulation are correct ð04Ł ^
other choices\ such as point!by!point measurements of
the velocity and temperature _elds would certainly be
more sensitive[ At the same time\ agreement with the
more easily measured average Nusselt number is a sine
qua non of any simulation code[

This agreement need only be within the experimental
error of the experiment\ and this raises the issue of the
required accuracy of a benchmark measurement[ To be
useful for benchmark work\ the measured Nusselt num!
ber must not only be very close to the true one\ it must
also be within some known tolerance of the true one[ As
the goal of the present experiment\ we set an experimental
uncertainty of 0) in the Nusselt number[ It was felt that
this is small enough to meet the requirements of the
CEF modellers\ yet large enough to be achievable in the
laboratory*although it substantially exceeds the accu!
racy normally achieved in natural convection exper!
iments[

2[ Experimental design

General Layout ] shown in cross!section in Fig[ 1\ the
laboratory model of the cubical cavity had the side!length
L nominally equal to 016 mm "4 in#[ Insulated with 099
mm of _ber!glass\ the model contained four main parts ]
a heat ~ux meter\ an electrically!heated plate\ and two
matching half!cubes*or {hemi!cubes\| which joined
along the parting line shown on the _gure to form the

complete cube[ The {hot!plate| part of the cube was
heated\ and the {back!plate| part cooled\ by two separate
streams of circulating water passing through tubes sold!
ered to their rear faces[ Measured at the cold end of the
cavity\ the heat ~ow was determined using a variation of
the hybrid method described by Hollands ð02\ 03Ł[ This
method incorporates the heat ~ux meter and the elec!
trically!heated plate\ which in this particular instance was
also the cold plate at Tc[

Achieving the Linear Pro_le ] we describe _rst those
aspects of the experimental design that were aimed at
maintaining the linear temperature distribution in the
sidewall part of the cube[ One aspect of this was the
above!mentioned choice for the location of the parting
line ] any heat transfer perpendicular to this edge would
be in direct con~ict with the linear temperature require!
ment\ because contact resistance would cause a tem!
perature jump across the parting line[ In the location
chosen for the parting line\ no such heat transfer occurs\
and there is no temperature jump[ After assembly\ 5 mm
wide strips of copper foil with adhesive backing were run
along the parting line on the outside\ to close o} the
cavity[

The choice for the thickness t of the sidewalls\ namely
2[07 mm\ was made after a preliminary analysis\ in which
the sidewall had been treated as a _n with natural con!
vection and radiation assumed on the face looking into
the cavity\ an appropriate loss coe.cient to the environ!
ment on its opposite face\ and the boundary condition at
the ends set at T � Th at x � 9\ and T � Tc at x � L[ With
t � 2[07 mm\ the maximum departure from linearity was
conservatively estimated to be 29[1) of the overall tem!
perature di}erence DT � Th−Tc\ and this was judged to
be su.ciently close to the linear pro_le[ With this setting
for t\ the amount of heat conducted through the sidewalls
was from 099 "at Nu � 099# to 09 999 "at Nu � 0# times
as great as the heat transfer going through the air in the
cavity[ This meant that the convection have virtually no
e}ect on the temperature distribution inside the sidewalls[

When the model was built up along these lines and
tested\ a substantial constriction resistance was dis!
covered at the joint between the hot plate and the sidewall
and that between the back plate and the sidewall\ as
evidenced by the observation that the temperature Tjh at
the former joint was di}erent from the hot plate tem!
perature Th\ and the temperature Tjc at the latter joint
was di}erent from the cold back!plate temperature Tbc[
"Here Th and Tbc refer to the plate temperatures far from
the joints[# A detailed conduction analysis of the hot
plate and the cold back plate ð05Ł con_rmed that the
observed temperature di}erence was essentially all
attributable to the constriction resistance and occurred
within a short distance "about 2 mm# from the joint[ The
di}erences were of the order of 3) of the overall DT\
which\ while small\ was not considered to be compatible
with the design accuracy of the experiment\ and a solution
to the problem had to be found[
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Fig[ 1[ Sketch of experimental apparatus in central cross!section[

When the test that discovered the constriction resist!
ance was _rst being carried out\ the hot water was cir!
culated to the end containing the electrically!heated plate
and the heat ~ux meter*which is the normal con!
_guration for the hybrid method and the one we had
expected to use here[ Part of the solution to the con!
striction resistance problem was to switch the circulating
water ~ows and then\ for each heat ~ux measurement\ to
adjust the electrical heating until the cold plate "i[e[\ the
electrically!heated plate# was at the same temperature as
the local joint temperature Tjc[ "Normally\ in the hybrid
method\ it would have been adjusted until the electrically!
heated plate was at the same temperature as the back
plate[# This removed the temperature jump {seen| by the
gas in the corner cavity\ and yet it was still basically
consistent with the hybrid method\ as will be discussed
shortly[ The second part of the solution was to insert an
auxiliary heater at the joint between the sidewall and the
hot plate\ as shown in Fig[ 1[ The heater consisted of a
19 mm wide copper strip "having right angle corners to
conform to the square hot plate# in which was imbedded
a nichrome wire[ The heater was thermally!bonded to the
hot plate within 0 mm of the joint\ at the location shown
in the _gure[ "Because of the presence of the parting line\
the auxiliary heater had actually to be made up in two
symmetric parts\ one for each hemi!cube[# As had been
predicted by a detailed conduction analysis of the hot
plate ð05Ł and con_rmed by experiments\ a proper level
of auxiliary electrical heating could be found to reduce
the temperature jump at this end of the cavity to less
than 9[0) of the overall DT[ Moreover\ the amount of
electrical heating required was una}ected by the con!
vection inside the cavity\ so it could be set once and for
all\ once the plate temperatures had been _xed[

Pressure:Density Variation Technique ] a function of
DT\ L\ and r\ the Rayleigh number can in principle be
varied by varying any of these three quantities[ On the

other hand\ to avoid excessive nonuniformity of ~uid
properties\ DT can be varied only over a rather limited
range\ and varying L requires the construction of several
models as well as presenting other problems ð06Ł[ The
remaining alternative is to vary the density by varying
the pressure\ and this is what was adopted in the present
experiments[

The model was mounted in a pressure vessel\ that\
along with its ancillary equipment\ was developed by
Shewen ð07Ł and subsequently used by Moore and Hol!
lands ð08Ł\ and Karagiozis et al[ ð19Ł\ among others[ The
vessel can maintain pressures ranging from 9[0Ð0039 kPa[
The pressure!controlling solenoid valves\ the tilting
mechanism for the model\ and data acquisition system
are computer!controlled[ Air from the University|s com!
pressed air lines was used as the ~uid[ With a humidity
ratio of less than 1[4 g of water vapour per kg of dry air\
it had properties essentially the same as those of dry air\
and it was treated as such for property evaluation[ Given
the model built up for the present experiments and given
the above!stated pressure range of the vessel\ the range
of Ra that could be covered was from about 099 to about
1×097[ On the other hand\ at pressures below about 09
kPa\ rare_ed gaseous conduction e}ects*not included
in the theoretical models of interest\ which assumed the
gas was in a continuum*began to in~uence the heat
transfer\ so the practical range of Ra was actually from
about 093 to 1×097[

Heat Transfer Measurement Technique ] both the heat
~ux meter and the electrically!heated plate "which was
also the cold plate in the present experiments# had been
used previously in other published experiments\ and as
such are described in more detail elsewhere ð02Ł[ With
thickness of 2[10 mm and constructed of copper with
chamfered edges as shown\ the electrically!heated plate
had been previously shown to take up a temperature
distribution uniform to within about 9[90 K in the
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environment it experienced in the model[ Four threaded
rods projecting from its rear face passed through holes
in the back plate[ Nuts and plastic washers on these rods
permitted the cold plate to be snugged up tightly against
the heat ~ux meter\ which had been greased prior to
assembly[ An air gap "average width � 9[25 mm# was left
between the edge of the electrically!heated plate and the
sidewall[ The heat ~ux meter\ a 2[29 thick by 094 mm
diameter disc\ has an output emf\ e\ that is a very sensitive
measure "sensitivity equal to 06 mV K−0# of the tem!
perature di}erence DT? across it[ A steady!state heat bal!
ance on the cold plate gives

q � qb−qe "0#

where q is the sought heat transfer across the cavity
"including radiation#\ qe is the electrical power input to
the cold plate "determined from the relevant voltage drop
V and current I# and qb is the heat transfer from the cold
plate[ Most "but certainly not all# of qb passes through
the heat ~ux meter ^ the rest travels through the air gap
between the electrically!heated plate and the back plate
and "in a small amount# through the threaded rod and
electrical wires attached to the back of the electrically!
heated plate[ Both the emf output of the heat ~ux meter\
e\ and qb are proportional to the temperature di}erence
DT? between the cold plate and the back plate[ It follows
that qb and e will be proportional to each other\ meaning
that qb will equal ae\ where a is a proportional constant[
It should be noted the proportionality will apply even
though the back plate|s near!isothermality does not
extend to the constriction!resistance region near the joint
where the sidewall meets the back plate ^ the pro!
portionality requires only that the shape of the tem!
perature pro_le on the back plate be constant\ inde!
pendent of q[ "It should also be noted that the
proportionality will still apply even though qb includes
heat transfer passing through the electrical wires and the
threaded rods\ because the other ends of these wires and
rods were only in thermal contact with the back plate[#
An in situ calibration ð05Ł was used to determine pro!
portionality constant a[ Equation "0# can now be re!
expressed in terms of measured quantities e\ V\ and I ]

q � ae−VI[ "1#

To start a measurement of the convective component
qconv of the heat transfer across the cavity\ the model
was _rst put in the heated!from!above orientation "i[e[\
8 � 079>#\ where the air in the cavity is stationary\ there
being no convection[ The heat transfer q at this orien!
tation consists of radiation and pure gaseous conduction[
We denote this {stagnant condition| by the subscripts s[
Thus

qs � aes−"VI#s[ "2#

During this measurement\ the electrical heating was
adjusted until the temperature Tc of the cold plate was
the same as the temperature Tjc at the joint\ thus eli!

minating the temperature jump discussed previously[
Then the model was rotated to the orientation of interest\
and the measurement repeated[ The convective heat
transfer qconv was then obtained by subtracting the heat
transfer qs from the heat transfer q measured at the orien!
tation at hand\ Thus\

qconv � ð"VI#s−"VI#Ł−a"es−e#[ "3#

This is the equation from which qconv was determined\ to
be entered into the Nusselt number[ One of the basic
assumptions of this technique was that the air really was
stationary in the heated!from!above orientation[ To test
this assumption\ the heat transfer qs in this orientation
was measured as a function of pressure ^ if there was any
convective motion happening\ the heat transfer should
certainly vary with the Rayleigh number and hence with
the pressure[ The _nding was that the heat transfer was
essentially independent of pressure for pressures greater
than about 09 kPa\ which would correspond to a Ray!
leigh number greater than about 093[ "The reduced heat
transfer that was observed at lower pressures was shown
to be attributed to rare_ed\ or non!continuum\ e}ects[#
It was therefore concluded that the assumption was a
valid one[ It was also concluded that Nusselt number
measurements at Ra less than about 093 may not cor!
responds to the continuum regime and should therefore
be discounted[

In using the above method\ it was often too time!
consuming to go to the heated!from!above orientation
to get "VI#s and es for every qconv measurement[ Since the
heat transfer in the heated!from!above orientation was
essentially independent of pressure\ we tentatively con!
cluded that one needs to measures "VI#s only at one or
two pressures in the continuum regime\ opening the way
to a simpler\ less time!consuming technique[ On the other
hand\ equation "3# assumed that a � as\ and so if a is a
function of pressure\ the simpler technique would not be
valid[ The pressure!dependence of a was measured "at
various temperature settings# and a was indeed found to
be highly!insensitive to pressure\ in the continuum regime
ð05Ł[ And so "VI#s and es had only to be determined once\
for a given set!up[

Temperature Determination ] a high degree of tem!
perature uniformity of the hot and back plates was
designed into the apparatus\ through the choice of the
plate thicknesses\ the circulation rate of the water passing
through the tubes\ and the tube spacing[ A thermal analy!
sis ð05Ł\ which assumed the highest Rayleigh number as
a worst case and allowed for heat loss to the ambient\
indicated that the plate temperatures should be uniform
to within about 29[924 K[ The temperatures of the hot
plate and the back plate were measured using four plati!
num resistance temperature detectors "RTDs#[ Two
RTDs were embedded in each of the two plates*one on
each side of the parting line*and the temperature of
each plate was calculated as the average of these two
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measurements[ The RTDs had been calibrated against a
platinum resistance thermometer having an accuracy of
9[90 K[ The remaining temperatures were measured with
Type!T thermocouples\ which are calibrated along with
the RTDs\ and which had their reference junction near
one of the RTD|s[ Twelve thermocouples\ six on each
side of the parting line of the model\ were used to measure
the sidewall temperature pro_le[ One junction of each
thermocouple was on the sidewall and the other was on
either the hot or back plate*whichever one was closer
to the corresponding junction in the sidewall[ The tem!
perature of the electrically!heated plate was measured
using a calibrated thermocouple embedded in the plate[

Procedure ] once a particular setting of the variables
"pressure\ tilt angle\ temperatures\ etc[# had been made\
the value of a was determined and a search was initiated
to _nd the power to the electrically!heated plate that
would make the temperature di}erence Tc minus Tjc be
zero "within 9[914 K#[ This was done with a micro!
computer programmed to change the supply voltage V
from a pre!set upper bound to a pre!set lower bound
whenever the temperature di}erence changed sign[ The
relative time at each bound was observed\ and based
on this information\ the bound settings were gradually
altered and brought closer together until the required
power was found[ Then a roughly one half hour measure!
ment period was entered into during which 401 measure!
ments were made of each of V\ I\ e\ the temperatures\
and the pressure\ the results averaged[ From this data the
Nusselt number and the Rayleigh numbers were cal!
culated from

Nu � 0¦
""VI#s−VI−a"es−e##L

koDTAhpfk"Tm\ P
"4#

Ra �
gcpoDTL2P1

Z1
omokoR

1T2
m

= fm"Tm\ P# "5#

where the subscript {o| on a property means the value of
a property evaluated at reference temperature To � 299
K and reference pressure Po � 0 atm\ and the functions
fk"T\ P# and Fm"T\ P# account for the variation of k and
the group "bTmcp:"Z1mk## with temperature T and
pressure P[ They typically ranged from about 9[84Ð0[912
in the experiments to be reported here[ Drawn from the
literature\ equations for these functions are given by
Leong ð05Ł[

Error Analysis ] the multiple!sample method of Mo}at
ð10Ł is adopted for the error analysis\ but with a minor
variation described shortly[ In Mo}at|s method\ one
repeats similar experiments "say M in all# and then one
estimates the overall random error ER from the standard
deviations of the observed results[ The _xed "or bias#
error EB is established separately for the accuracy of
instruments and similar considerations[ The total uncer!
tainty UY is then calculated as the root mean square of
the _xed and random errors ] UY �"E1

R¦E1
B#0:1[ It is

assumed\ in the method\ that one is trying to determine
the error in a quantity Y " for example\ Y could be the
Nusselt number# that is not measured in itself but is
calculated from measurements of the set of measured
variables ] Xi with i � 0\ 1\ [ [ [ \ N using a function
Y � Y"X0\ X1\ [ [ [ \ XN#[ An example of such a function is
equation "4# above with X0 � V\ X1 � I\ X2 � L\ etc[ The
_xed error EB in Y is obtained from

EB � $s
N

i�l 0
1Y
1Xi

= Bi1
1

%
0:1

"6#

where Bi is the bias error in Xi\ and the random error ER

from

ER � t $s
N

i�l 0
1Y
1Xi

= Si1
1

%
0:1

"7#

where t is the Student t multiplier at the 84) con_dence
level with M−0 degrees of freedom and Si is the standard
deviation of the set of M measurements of Xi\ there being
one for each experiment[

Table 0 presents the bias errors for each Xi that enters
into the evaluation of Nu and Ra[ Details of their deter!
mination are given by Leong ð05Ł[ In certain cases "e[g[
for L\ DT\ and Ahp#\ the error incudes a contribution
associated with the spatial variation of a subject quantity[
For example\ in addition to thermocouple calibration
errors and contact emfs\ the Bi corresponding to DT takes
into account that DT is not truly uniform across the
cavity\ because of the afore!mentioned temperature non!
uniformities[ It is recognized that\ though included in
Table 0\ the ~uid properties ko\ mo\ Zo and cpo\ were not
actually measured in the M experiments in question ^
nevertheless they are included because their uncertainties
contribute to the bias error in Nu and Ra in the manner
given by equation "6#[ The bias errors in fk"Tm\ P# and
fm"Tm\ P# were assumed to arise only from the bias errors
in Tm and P ^ that is\ the parameters in their equations
were assumed to be free of error[

As mentioned earlier\ we actually used an altered form
of Mo}at|s multiple!sample method[ The alteration was
motivated by the fact that Mo}at|s method requires that
all the Xi should have the same nominal values in all of
the M experiments\ whereas in the present experiments\
di}erent nominal values are used for several of the vari!
ables*namely DT\ P\ and Tm[ The experiments are done
in such a way\ however\ that the same nominal value of
Ra applied in all the experiments\ so that\ one could
expect all the Nusselt numbers to be the same\ if there
were no random errors[ While in spirit this is very close
to "and indeed is an extension of# Mo}at|s basic idea\ it
does mean that equation "7# cannot be used for deter!
mining ER[ One can show\ however\ that subject to stan!
dard assumptions on the nature of the errors "that they
are small and independent# the following equation gives
the same eR as equation "7# ]
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Table 0
Errors in measured quantities\ Xi

Index Quantity Nominal value"s# Bias limit
i Xi Unit or range of Xi B"Xi#

0 VI\ "VI#s W 9 ³ VI ³ 0[13 9[9992VI
1 e\ es mV 5[4 ³ e ³ 20 9[99904e
2 DT K 3\ 4\ 5\ 09 z2×09−4DT1¦4×09−3

3 P Pa P ³ 093 z"4×09−3P#1¦0[98
093 ³ P ³ 094 z"4×09−3P#1¦53[3
P × 094 z"4×09−3P#¦5399

4 Tm K 186\ 296 z"6×09−5DT#¦5×09−3

5 a W mV−0 9[9289 9[994a

6 L m 9[0161 9[99997
7 Ahp m1 0[512×09−1 9[99998
8 R J kg−0 K−0 176[0 9[9992R

09 g m s−1 8[79268 9[99909
00 Zo 9[888691 9[99975
01 ko W m−0 K−0 9[91503 9[90ko

02 mo N s m−1 0[735×09−4 9[994mo

03 cpo J kg−0 K−0 0995[58 9[9902cpo

04 n 9[29 9[92

ER � t &
s
M

j�l

"Yj−YÞ#1

M"M−0# '
0:1

"8#

where Yj is the calculated value of Y from the jth exper!
iment and YÞ is the average of the Yj[ The use of equation
"8# for ER is not restricted to there being the same nominal
Xi in all experiments\ and so it will be adopted for
evaluating the random error[

It is common in CFD work to report the Nusselt num!
ber at a particular Rayleigh number such as 093\ 094\ 095\
etc[ Let this speci_ed Ra be denoted as Ra� and the
corresponding Nu as Nu�[ The experimentalist can set
the Rayleigh number to some value very close to Ra�\
but the exact number will never be precisely achieved
because there will be a bias error in Ra and also because\
even in the absence of bias errors\ it is not normally
possible to set a measured variable exactly to a speci_ed
value[ All of this will cause an error in the reported Nu�[
One cannot establish this error without some estimate of
how quickly Nu is changing with Ra[ It is widely recog!
nized\ however\ that the slope of a graph of log Nu vs[
log Ra is a slowly varying function of Ra[ This implies
that provided we are looking at small di}erences in Ra
and Ra�*normally the case in error analysis*then the
_rst two terms will su.ce in the Taylor Series expansions
in logRa of logNu about log Ra�[ If the resulting equa!
tion for logNu is exponentiated and solved for Nu�\ there
results

Nu� � Nu"Ra�:Ra#n "09#

where n is the slope of the logarithmetic plot[ Substituting
equations "4# and "5# for Nu and Ra into equation "09#
gives the equation for Nu� in terms of the Xi and n\ and
so by treating Y as Nu� in equation "6# and "8# the error
in Nu� can be established[ This process will however
require a _xing of the index n ] n can be estimated from
the value of Nu at values of Ra� in the vicinity of the Ra�
of current interest[ For example\ if Ra� is 094\ n can be
estimated from measurements of Nu and Ra � 093 and
095[ This estimate will be in some "bias# error\ and so n
must be added to the list of the set Xi determining the
errors in Xi[ The uncertainty in n given in Table 0 is
conservatively large\ yet it did not contribute signi_cantly
to the uncertainty in Nu�[

3[ Results

The Temperature Pro_le in the Sidewalls ] Fig[ 2 shows
the measured temperature distribution measured at the
sidewalls "experimental points#\ with desired straightline
pro_le shown as a solid line[ There was a row of ther!
mocouples on each hemi!cube\ and so two plots are
shown\ one for each side[ The observed points deviate
from the straight line by about 29[94 K\ which was
just slightly less than the measurement uncertainty in
temperature[ In this particular experiment the Rayleigh
number was approximately 096 and angle 8 was 89>\ but
similar linearity was observed at other values of Ra and
8[

Critical Rayleigh Number Determination ] as a second



W[H[ Leon` et al[:Int[ J[ Heat Mass Transfer 30 "0887# 2706Ð2717 2714

Fig[ 2[ Plot of the temperature distribution on the side!wall
demonstrating the required _delity to the sought linear pro_le[

check of the apparatus\ the critical Rayleigh number Rac

in the 8 � 9> "heating from below# was measured and
the result compared to the theoretical value of Rac for
the linear temperature pro_le\ which is 5863 "Catton
ð11Ł#[ This check also tested the linearity of the sidewall
temperature pro_le\ since Rac is quite dependent on the
nature of the sidewall boundary condition*e[g[\ for the
adiabatic sidewall Rac is equal to 2335[ The experimental
method of Hollands and Konicek ð12Ł was used for the
Rac determinations\ which were carried out with
DT � 8[4 K and again with DT � 4[3 K[ In both cases
Tm was 184 K[ The results were as follows ] at DT � 8[4
K\ Rac was measured to be 58582033 ^ at DT � 4[3 K\
Rac was measured to be 69472008[ The theoretical value
of 5863 is well within experimental error of both of these
experimental values[

Results of Error Analysis at Ra� � 39 999 ] a set of
experiments were made at Ra nominally equal to 39 999\
at each of the tilt angles ] 8 � 9\ 34>\ and 89>[ In all\ 37
experiments were performed ] 07 at 8 � 9>\ 07 at 8 � 34>\
and 01 at 8 � 89>[ For each of the 8 � 9> and 8 � 34>
angular settings\ the experiments covered six di}erent
combinations of DT and Tm\ namely the six permutations
of the DT � 3[4 K\ 5[1 K\ and 8[6 K with Tm � 187 K
and Tm � 297 K[ For the 8 � 89> angular setting\ they
covered the same set\ except the two permutations of
DT � 5[1 K and 8[6 K with Tm � 187 K were not done[
For each combination\ the pressure was adjusted to one
of three slightly!di}erent values\ all three of which
brought the Rayleigh number to a value between 28 399
and 39 599\ and an experiment was performed at each

pressure setting[ This completed the total set of 37 exper!
iments[

Table 1 gives the results in the _rst _ve items[ Item 0
reviews the number of experiments at each 8[ Item 1 gives
the measured Nu�\ calculated as the average of the M
measured values of Nu� ^ it is the value that is to be
compared with the numerically simulated Nusselt num!
ber at Ra � 39 999[ Items 2 and 3 give the random and
bias errors\ ER and EB\ in Nu� calculated using equations
"6# and "8# with Y equal to Nu�[ Item 4 is the uncertainty
UNu in Nu�\ taken as the square root of the sum of the
squares of EB and ER[ Values given in brackets in Items
2\ 3\ and 4 express the corresponding errors as per!
centages of Nu�[ It would appear from these entries that
the goal of measuring the Nusselt number within a pro!
jected error of 0) has been achieved[

Comparisons with CFD Simulations at Ra� � 39 999 ]

at a Rayleigh number as low as 39 999\ CFD simulations
of steady laminar ~ow can be resolved to high accuracy\
and there is no reason to expect turbulent or unsteady
~ow\ even at 8 � 9> ð5\ 8Ł[ Thus a comparison of such
simulations with the experimental values of Nu� at this
Ra� will form the _nal check of the apparatus and of the
method of estimating errors[ The Appendix gives the
details of the CFD simulations that were carried out to
calculate simulated values "denoted Nu�s # of Nu�\ to be
compared with the experimental values[ The uncertainties
in Nu�s were an order of magnitude smaller than the exper!
imental uncertainties\ so for practical purposes Nu�s will
be treated as exact[

In the _rst round of the CFD simulations\ the ~uid
properties were treated as invariant with temperature\
and the results\ denoted Nu�s\c are given as Item 5 in Table
1[ They are seen to be quite close to the experimental
values\ but nonetheless\ for two of the three angular
settings\ the disagreement is greater than the experimental
uncertainty[ An excellent single!number {comparison!
ratio| is a}orded by forming the ratio\ given in Item 6\
which is the di}erence between the simulated and exper!
imental values\ divided by the uncertainty in the exper!
imental value[ This quantity would be expected to be
greater than unity only 0 in 19 times\ and it is seen to be
greater than unity in two of the three comparisons shown[

The CFD simulations were repeated using variable
~uid properties[ In these simulations the values of Tm and
DT were set at average values over the M experiments\
the actual method of forming these averages will be
de_ned later[ The results\ denoted Nu�s\v\ are shown in
Item 7 in Table 1[ In the case of variable ~uid properties\
the hot and cold plate Nusselt numbers are not necess!
arily the same\ and the results reported in Table 1 are
those at the cold plate\ which is where the heat ~ow was
actually measured[ Item 8 gives the comparison!ratio for
this case\ and the ratio is seen to be less than unity in all
of the three cases[ Item 09 gives the per cent di}erence
between the experimental and "variable!property# simu!
lated Nusselt numbers[ These di}erences average 9[17)[
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Table 1
Results of experiments and simulations at Ra� � 3×093

8

n Item 9> 34> 89>

0 No[ of experiments\ M 07 07 01
1 Nu� 1[907 1[450 1[226
2 Random error in Nu� 9[9972 9[9063 9[9957

"as ) of Nu�# "9[30)# "9[57)# "9[18)#
3 Bias error in Nu� 9[9017 9[9069 9[9046

"as ) of Nu�# "9[52)# "9[55)# "9[56)#
4 Uncertainty UNu in Nu� 9[904 9[913 9[906

"as ) of Nu�# "9[63)# "9[83)# "9[62)#
5 Simulated Nu�\ based on constant ~uid 0[888 1[446 1[178

props\ Nu�s\c

6
Nu�−Nu�s\c

UNu

0[13 9[05 1[70

7 Simulated Nu�\ based on variable ~uid 1[916a 1[457a 1[239
props\ Nu�s\v

8
Nu�−Nu�s\v

UNu

−9[48 −9[18 −9[07

09
Nu�−Nu�s\v

Nu�
\ ) 9[34) 9[16) 9[02)

00 "DT:Tm# � average of "DT:Tm# over 9[9113 9[9113 9[9192
M experiments

a Based on extrapolation:interpolation from conditions with "DT:Tm# was slightly di}erent from the
average "DT:Tm# of the experiments[

It is clear from these results that variable ~uid property
simulations are going to be required to get values that
are within experimental error of the experimental values[
This means that Nu is a function of another dimensionless
group\ in addition to Ra and Pr[ A suitable group would
seem to be the ratio DT:Tm[ For very small values of
this ratio\ the constant property simulations should yield
accurate values\ but even with the small DTs used in
the present experiments\ this limit has not been reached[
Given that the DT:Tm was not the same in all of the 07
or so experiments performed at a given angle\ the ques!
tion arises as to how one can do a single simulation
to account for the multi!experiments that went into an
experimental determination of Nu�[ We feel that because
the di}erence in Nusselt number between the constant!
property and variable!property solutions were very small
"of order of 0)#\ the _rst term in the Taylor Series
expansion of Nu� about DT:Tm should be su.cient to
cover the observed e}ect\ and therefore a single simu!
lation taken at the average DT:Tm in the 07 or so exper!
iments should su.ce[ "An alternative would be to per!
form 07 simulations\ and average the Nusselt numbers
obtained[ While this would simulate what was actually
done experimentally\ it would involve a very large num!

ber of simulations[# The values of DT:Tm for the three
angular settings are given as Item 00 in Table 1[ In fact\
of the variable!property simulations reported in Table 1\
only the simulations at 8 � 89> actually had DT:Tm equal
to the average of the experiments[ Those at 8 � 9> had
the DT:Tm about 24) less than\ and those at 8 � 34>
had DT:Tm about 31) greater than the average values
on the experiments[ The values reported in the Table
have been corrected for the di}erence on the basis of
the aforementioned Taylor Series approximation for the
DT:Tm e}ect[

4[ Conclusions

The di}erentially!heated\ air!_lled cavity with the side!
walls having a linear temperature distribution from the
cold to the hot plate can be physically achieved in the
laboratory[ This means that the subject cavity at any
orientation can serve as the basis of a simply!stated
benchmark problem for testing CFD codes\ and there!
fore\ codes can be tested against experimental results as
well as against the results of other codes[

Clearly\ for the experimental results to be useful\ their
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experimental error must be known with reasonable accu!
racy[ Moreover\ this error should be small enough for
the code to be tested in a demanding way[ We have shown
in this paper that an error in the Nusselt number of the
order of 0) or less is demonstrably achievable[ The error
was established using standard methods for assessing
errors\ and this assessment has been validated by testing
against essentially exact solutions achievable at low Ray!
leigh number[ Thus at Ra � 3×093\ the measured results
and those obtained with a converged CFD code agree
with an average deviation of 9[2)[ Measurements of the
critical Rayleigh number at the horizontal orientation
also gave results that agree closely with the theoretical
value\ in this cases to within about 0)[

In order for the CFD simulations to give results that
agree with the experimental results for the Nusselt num!
ber within the experimental error\ the CFD code must
model the way in which the ~uid properties vary with
temperature[ This statement is true for the present exper!
iments\ even though the temperature di}erence was kept
to a value "about 5 K# that was only about 1) of the
mean of the two plate absolute temperatures[ This means
that the plate temperatures in the simulated problem
must match those in the experiments[

The advantage to keeping to air as the ~uid is that
one can achieve a wide range in Rayleigh number while
keeping to the same experimental model\ the Rayleigh
number for a given model being limited only by the
maximum pressure achievable with the apparatus[ In the
apparatus and the model of the present experiments\ one
can achieve Rayleigh numbers of the order to 097[ The
Nusselt numbers at Rayleigh numbers of 094\ 095\ 096\
and 097 will be given in a companion paper[

Acknowledgements

This work was supported by a Natural Sciences and
Engineering Research Council "NSERC# Canada Schol!
arship to W[ H[ Leong\ and also by a Research Grant
from NSERC[ We also wish to thank Marius VanReenan
for his assistance in designing and trouble!shooting the
apparatus[

Appendix ] Description of CFD simulations

A computational code called TASC~ow2D\ developed
by Advanced Scienti_c Computing Ltd\ Waterloo\ Onta!
rio\ Canada was used for the numerical simulations
whose results are listed in Table 1[ TASC~ow2D uses
the _nite volume method to solve the three!dimensional
Navier!Stokes equations and the energy equation[ The
Boussinesq approximation was used[ Sutherland|s Law
was used to represent the temperature dependence of
the ~uid|s thermal conductivity and viscosity\ and an

equation given by Shewen ð07Ł was used to represent the
temperature dependence of speci_c heat[ The ideal gas
law was used to represent the temperature dependence of
the density and the volumetric expansion coe.cient\ b[
Because of the symmetry of the cavity about the plane
z � W:1 "see Fig[ 0 for co!ordinate system#\ only half of
the cavity needed to be simulated[ A rectilinear grid was
set up\ with a power!law distribution of nodes in each of
the three directions[ Convergence was assumed to have
been obtained when the maximum dimensionless residual
in each transport equation was less than 09−4[ Con!
vergence took much longer "several days# to be achieved
at the 8 � 9 con_guration\ indicating a tendency for
unsteady ~ow at that angle\ but eventually a converged
solution was obtained for all three angle settings[ Three
di}erent grid sizes were used ] 05×6×04\ 29×03×29\
and 59×17×59\ each of these triplets corresponding to
the number of nodes in the x\ z\ and y directions\ respec!
tively[ Then the Repeated Richardson Extrapolation
"RRE# method ð13Ł was used to extrapolate these indi!
vidual results for Nu to give the expected result for an
in_nite grid and this latter value was taken to be the exact
answer[ The numerical error in this value was taken to
be one!half the di}erence between the result obtained
with the _nest grid and the RRE extrapolated result[ In
the constant ~uid property simulation\ the properties
were evaluated at the mean temperature Tm\ whereas
in the variable property simulation the properties were
calculated locally[ The values of Tm\ DT and the pressure
P in the three simulations were as follows ] at f � 9\
Tm � 296[7 K\ DT � 3[31 K\ and P � 12[10 kPa ^ at
f � 34>\ Tm � 297[7\ DT � 8[53 K\ and P � 04[74 kPa ^
and at f � 89>\ Tm � 295[4\ DT � 5[00 K\ and P � 08[74
kPa[ The corresponding Nusselt numbers for the con!
stant property simulations were 0[8878\ 1[4469\ and
1[1776\ respectively\ while the corresponding Nusselt
numbers for the variable!property simulations were
1[9068\ 1[468\ and 1[2399\ respectively[
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